
24 Jun 2002 Roberto Innocente 1

 End nodes challenges with
multigigabit networking

GARR – WS4

Roberto Innocente
inno@sissa.it

24 Jun 2002 Roberto Innocente 2

Gilder’s law

proposed by
G.Gilder(1997) :
The total bandwidth of

communication systems
triples every 12 months

compare with Moore’s
law (1974):
The processing power of a

microchip doubles
every 18 months

compare with:
memory performance

increases 10% per year

(source Cisco)

24 Jun 2002 Roberto Innocente 3

Optical networks

Large fiberbundles
multiply the fibers per
route : 144, 432 and now
864 fibers per bundle
DWDM (Dense
Wavelength Division
Multiplexing) multiplies
the b/w per fiber :

Nortel announced a 80 x
80G per fiber (6.4Tb/s)
Alcatel announced a 128
x 40G per fiber(5.1Tb/s)

24 Jun 2002 Roberto Innocente 4

10 GbE /1

IEEE 802.3ae 10GbE ratified on June 17, 2002
Optical Media ONLY : MMF 50u/400Mhz 66m, new
50u/2000Mhz 300m, 62.5u/160Mhz 26m, WWDM 4x
62.5u/160Mhz 300m, SMF 10Km/40Km
Full Duplex only (for 1 GbE a CSMA/CD mode of
operation was still specified despite no one
implemented it)
LAN/WAN different :10.3 Gbaud – 9.95Gbaud
(SONET)
 802.3 frame format (including min/max size)

24 Jun 2002 Roberto Innocente 5

10GbE /2

from Bottor
(Nortel
Networks) :

marriage of
Ethernet
and DWDM

24 Jun 2002 Roberto Innocente 6

Challenges

Hardware

Software

Network protocols

24 Jun 2002 Roberto Innocente 7Nic memory

Processor

Standard data flow /1

Processor

North Bridge

Memory

PCI bus NIC Network

Processor bus

I/O bus Memory
bus

1

2

3

24 Jun 2002 Roberto Innocente 8

Standard data flow /2

Copies :
Copy from user space to kernel buffer
DMA copy from kernel buffer to NIC memory
DMA copy from NIC memory to network

Loads:
2x on the processor bus
3x on the memory bus
2x on the NIC memory

24 Jun 2002 Roberto Innocente 9

Hardware challenges

Processor bus

Memory bus

I/O bus

Network technologies

24 Jun 2002 Roberto Innocente 10

Processor / Memory bus

Processor bus :
current technology 1 - 2 GB/s
Athlon/Alpha are pt-2-pt / IA32 multi-pt
e.g IA32 P4 : 4 x 100 Mhz x 8 bytes = 3.2 GB/s peak, but with
many cycles of overhead for each line of cache transferred

Memory bus :
current technology 1-2 GB/s
DDR 333 8 bytes wide = 2.6 GB/s th. peak
RAMBUS 800 Mhz x 2 bytes x 2 channels = 3.2 GB/s th. peak
setup time should be taken into account

24 Jun 2002 Roberto Innocente 11

Memory b/w

24 Jun 2002 Roberto Innocente 12

PCI Bus

PCI32/33 4 bytes@33Mhz=132MBytes/s (on i440BX,...)

PCI64/33 8 bytes@33Mhz=264Mbytes/s

PCI64/66 8 bytes@66Mhz=528Mbytes/s (on i840)

PCI-X 8 bytes@133Mhz=1056Mbytes/s

PCI-X implements split transactions

24 Jun 2002 Roberto Innocente 13

PCI performance
with common chipsets

478418Supermicro P4D6, P4 Xeon, Intel e7500 chipset

299215P4 Xeon, Intel 860 chipset

311299AMD dual, AMD760MPX chipset

228183API UP2000 alpha, Tsunami chipset

353299Supermicro 370DEI, PIII, Serverset III HE

379353Intel 460GX (Itanium)

464387Alpha ES45, Titan chipset

486432Supermicro 370DLE, dual PIII, Serverworks Serverset III LE

Write MB/sRead MB/sChipset

24 Jun 2002 Roberto Innocente 14

I/O busses

PCI/PCI-X available, DDR/QDR under development
Infiniband (HP, Compaq, IBM, Intel): available

PCI replacement, memory connected !
pt-to-pt , switch based
2.5 Gb/s per wire f/d, widths 1x,4x,12x

3rd Generation I/O (HP,Compaq,IBM..)
PCI replacement
pt-to-pt switched
2.5 Gb/s per wire f/d ,widths 1x,2x,4x,8x,12x..32x

HyperTransport (AMD,...)
PCI and SMP interconnect replacement
pt-to-pt switched, synchronous
800 Mb/s- 2Gb/s per wire f/d, widths 2x,4x...32x

24 Jun 2002 Roberto Innocente 15

Network technologies

Extended frames :
Alteon Jumbograms
(MTU up to 9000)

Interrupt suppression
(coalescing)
Checksum offloading

(from Gallatin 1999)

24 Jun 2002 Roberto Innocente 16

Software challenges

ULNI (User Level Network Interface),
OS-bypass

Zero copy

Network Path Pipelining

24 Jun 2002 Roberto Innocente 17

Software overhead

txmission
time

software

 overhead

software
overhead software

overhead

total
time

10Mb/s Ether 100Mb/s Ether 1Gb/s

Being a constant, is becoming
more and more important !!

24 Jun 2002 Roberto Innocente 18

ULNI / OS-bypass

Traditional networking can be defined as in-kernel networking : for each
network operation (read / write) a kernel call (trap) is invoked
This frequently is too expensive for HPN (high performance networks)
Therefore in the last years, in the SAN environment User Level Network
Interface (ULNI) / OS-bypass schemes have had a wide diffusion
These schemes avoid the kernel intervention for read/write operations.
The user process directly reads from/writes to the NIC memory using
special user space libraries. Examples : U-Net, Illinois Fast Messages, ...
VIA (Virtual Interface Architecture) is a proposed ULNI industry
standard backed by Intel, Compaq et al. : VIA over IP is an internet draft

24 Jun 2002 Roberto Innocente 19

Standard TCP / OS-bypass
ULNI(gm) on i840 chipset

24 Jun 2002 Roberto Innocente 20

Advanced networking

Traditional UNIX i/o calls have an implicit copy
semantics. It is possible to diverge from this creating a
new API that avoids this requirement.
Zero-copy can be obtained in different ways :

user/kernel page remapping (trapeze bsd drivers) :
performance strongly depends on particular h/w, usually a
Copy On Write flag preserves the copy semantic
fbufs (fast buffers , Druschel 1993) : shared buffers

24 Jun 2002 Roberto Innocente 21Nic memory

Processor

Zero-copy data flow

Processor

North Bridge

Memory

PCI bus NIC Network

Processor bus

I/O bus Memory
bus

1

2

24 Jun 2002 Roberto Innocente 22

Trapeze driver for
Myrinet2000 on freeBSD

zero-copy TCP by page
remapping and copy-on -write
split header/payload
gather/scatter DMA
checksum offload to NIC
adaptive message pipelining
220 MB/s (1760 Mb/s) on
Myrinet2000 and Dell
Pentium III dual processor

The application does’nt touch the data
(from Chase, Gallatin, Yocum

2001)

24 Jun 2002 Roberto Innocente 23

Fbufs (Druschel 1993)

Shared buffers between user
processes and kernel
It is a general schemes that
can be used for either
network or I/O operations
Specific API without copy
semantic
A buffer pool specific for a
process is created as part of
process initialization
This buffer pool can be pre-
mapped in both the user and
kernel address space

uf_read(int
fd,void**bufp,size_t
nbytes)
uf_get(int fd,void**
bufpp)
uf_write(int
fs,void*bufp,size
nbytes)
uf_allocate(size_t
size)
uf_deallocate(void*ptr
,size_t size)

24 Jun 2002 Roberto Innocente 24

Gigabit Ethernet TCP

24 Jun 2002 Roberto Innocente 25

TOE
(TCP Off-loading Engine)

24 Jun 2002 Roberto Innocente 26

Network Path Pipelining

It is frequently believed that the overhead on network operations
decreases as the size of the frame increases, and therefore in principle
an infinite frame would allow the best performance
This in effect is false (e.g. Prilly 1999) for lightweight protocols : Myrinet,
QSnet (does’nt apply to protocols like TCP that require a checksum
header)
Myrinet does’nt have a maximum frame size, but to efficiently use the
network path, it is necessary that all the entities (sending CPU, sending
NIC DMA, sending i/f, receiving i/f,...) along the path could work at the
same time on different segments (pipelining). Using long frames inhibits
co-working.
It is a linear programming exercise to find the best frame size : it is
different for different packet sizes.
On PCI frequently the best frame size is the maximum transfer size
allowed by the MLT (maximum latency timer) of the device : 256 or 512
bytes

24 Jun 2002 Roberto Innocente 27

Network protocols
challenges

Active Queue Management (AQM):
FQ, WFQ, CSFQ, RED

ECN
MPLS
TCP Congestion avoidance/control
TCP friendly streams
IP RDMA protocols

24 Jun 2002 Roberto Innocente 28

AQM
(active queue management)

RFC 2309 Braden et al. :
Recommandation on Queue Management and Congestion

Avoidance in the Internet (Apr 1998)
“Internet meltdown”, “congestion collapse” first
experienced in the mid ’80
first solution was V.Jacobson congestion avoidance
mechanism for TCP (from 1986/88 on)
Anyway, there is a limit to how much control can be
accomplished from the edges of the network

24 Jun 2002 Roberto Innocente 29

AQM /2

queue disciplines :
 tail drop

a router sets a max length for each queue, when
the queue is full it drops new packets arriving
until the queue decreases because a pkt from the
queue has been txmitted

head drop
random drop

24 Jun 2002 Roberto Innocente 30

AQM /3

Problems of tail-drop discipline:
Lock-Out :

in some situations one or a few connections
monopolize queue space. This phenomenon is
frequently the result of synchronization

Full Queues :
queues are allowed to remain full for long periods of
time, while it is important to reduce the steady state
size (to guarantee short delays for applications
requiring them)

24 Jun 2002 Roberto Innocente 31

Fair Queuing

Traditional routers route packets
independently. There is no
memory, no state in the network.
Demers, Keshav, Shenker (1990)
:

Analysis and simulation of a Fair
Queuing Algorithm

Incoming traffic is separated into
flows, each flow will have an
equal share of the available
bandwidth.

It approximates the sending of 1 bit
for each ongoing flow

Statistical FQ (hashing flows)

switching output
line

Traditional queuing:
one queue per line

switching output
line

Fair queuing :
one queue per flow

24 Jun 2002 Roberto Innocente 32

Weighted Fair Queuing
(WFQ)

This queuing algorithm was developed to serve real time
applications with guaranteed bandwidth.
L.Zhang (1990):
Virtual clock: A new Traffic Control Algorithm for Packet

Switching Networks
Traffic is classified, and for each class a percentage of the

available b/w is assigned. Packets are sent to different queues
according to their class. Each pkt in the queue is labelled with
a calculated finish time. Pkts are transmitted in finish time
order.

24 Jun 2002 Roberto Innocente 33

CSFQ (Core stateless Fair
Queuing)

Only ingress/egress routers
perform packet
classification/per flow buffer
mgmt and scheduling
Edge routers estimate the
incoming rate of each flow
and use it to label each pkt
Core routers are stateless
All routers from time to time
compute the fair rate on
outgoing links
This approximates FQ (from Stoica,Shenker,Zhang1998)

24 Jun 2002 Roberto Innocente 34

RED /1
(Random Early Detection)

Floyd, V.Jacobson 1993
Detects incipient congestion
and drops packets with a
certain probability depending
on the queue length. The
drop probability increases
linearly from 0 to maxp as the
queue length increases from
minth to maxth. When the
queue length goes above
maxth (maximum threshold)
all pkts are dropped

24 Jun 2002 Roberto Innocente 35

RED /2

It is now widely deployed
There are very good performance reports
Still an active area of research for possible
modifications
Cisco implements its own WRED (Weighted
Random Early Detection) that discards packets
based also on precedence (provides separate
threshold and weights for different IP
precedences)

24 Jun 2002 Roberto Innocente 36

RED /3

(from Van Jacobson, 1998) Traffic on a busy E1 (2
Mbit/s) Internet link. RED was turned on at 10.00 of the
2nd day, and from then utilization rised up to 100% and
remained there steady.

24 Jun 2002 Roberto Innocente 37

ECN (Explicit Congestion
Notification) /1

RFC 3168 Ramakrishnan, Floyd, Black :
The addition of Explicit Congestion Notification (ECN) to IP (Sep 2001)

Uses 2 bits of the IPv4 Tos (Now and in IPv6 reserved as a
DiffServ codepoint). These 2 bits encode the states :

ECN-Capable Transport : ECT(0) and ECT(1)
Congestion Experienced (CE)

If the transport is TCP, uses 2 bits of the TCP header, next to the
Urgent flag :

ECN-Echo(ECE) set in the first ACK after receiving a CE pkt
Congestion Window Reduced (CWR) set in the first pkt after having
reduced cwnd in response to an ECE pkt

With TCP the ECN is initialized sending a SYN pkt with ECE and
CWR on, and receiving a SYN+ACK pkt with ECE on

24 Jun 2002 Roberto Innocente 38

ECN /2

How it works:
senders set ECT(0) or ECT(1) to indicate that the end-nodes of
the transport protocol are ECN capable
a router experiencing congestion, sets the 2 bits of ECT pkts to
the CE state (instead of dropping the pkt)
the receiver of the pkt signals back the condition to the other end
the transports behave as in the case of a pkt drop (no more than
once in a RTT)

Linux adopted it on 2.4 ... many connection troubles (the
default now is to be off, can be turned on/off using :
/proc/sys/net/ipv4/tcp_ecn). Major sites are using
firewalls or load balancers that refuse connections
from ECT (Cisco PIX and Load Director, etc).

24 Jun 2002 Roberto Innocente 39

MPLS (Multi Protocol Label
Switching)

This technology is a marriage of traffic engineering as on ATM and IP :
Special routers called LER (Label Edge Routers) mark the packets
entering the net with a label that indicates a class of service (FEC or
Forward Equivalence Class) or priority : the 32 bit header (a Shim
header) is inserted between the OSI level 2 header and upper level
headers (after the ethernet header, before the IP header): 20 bits for the
label, 3 experimental, 1 bit for stack function and 8 bit for TTL
The IP packet becomes an MPLS pkt
Internal routers work as LSR (Label Switch Routers) for MPLS pkts :
will look up and follow the label instructions (usually swapping label)
Between MPLS aware devices LSP (Label Switch Paths) are
established and designed for their traffic characteristics

24 Jun 2002 Roberto Innocente 40

Congestion control in TCP/1

Sending rate is limited by a congestion window
(cwnd): the maximum # of pkts to be sent in
a RTT(round trip time). Phases:
Slow start : cwnd is increased exponentially
(# pkts acknowledged in a RTT are summed
to cwnd) up to a threshold ssthresh or a loss
Congestion avoidance: AIMD (Additive
increase, Multiplicative decrease) phase.
cwnd is increased by 1 each RTT. When
there is a loss, cwnd is halved.

24 Jun 2002 Roberto Innocente 41

Congestion control in TCP/2

from [Balakrishnan 98]

24 Jun 2002 Roberto Innocente 42

AIMD / AIPD
Congestion control

AIMD (Additive Increase
Multiplicative Decrease) :

W = W + a (no loss)
W = W * (1 – b)

(L > 0 losses)
it achieves a b/w ∝1/sqrt(L)

AIPD (Additive Increase
Proportional Decrease):

W = W + a (no loss)
W = W * (1 –b *L)
(L > 0 losses)

it achieves a b/w ∝1/L

(ns2 plot of 3 flows,source Lee 2001)

24 Jun 2002 Roberto Innocente 43

TCP stacks

Tahoe(4.3BSD,Net/1) : implements Van Jacobson
slow start/congestion avoidance and fast retransmit
algorithms
Reno(1990,Net/2) : fast recovery, TCP header
prediction
Net/3(4.4BSD 1994): multicasting, LFN (Long Fat
Networks) mods
NewReno : fast retransmit even with multiple losses
(Hoe 1997)
Vegas: experimental stack (Brakmo, Peterson 1995)

24 Jun 2002 Roberto Innocente 44

TCP Reno

It is the most widely referenced
implementation, basic mechanisms are
the same also in Net/3 and NewReno
It is biased against connections with long
delays (large RTT) : in this case the
increase of the cwnd happens slowly and
so they obtain less avg b/w

24 Jun 2002 Roberto Innocente 45

LFN Optimal Bandwidth
and TCP Reno

Let’s consider a 1 Gb/s WAN connection with a
RTT of 100 ms (BW*rtt ~12 MB)
Optimal congestion window would be about
8.000 segments (1.5k)
When there will be a loss cwnd will be
decreased to 4.000 segments
It will take 400 seconds (7minutes!) to recover
to the optimal b/w. This is awful if the network
is not congested !

24 Jun 2002 Roberto Innocente 46

TCP Vegas

Approaches congestion but tries to avoid it.
Estimates the available b/w looking at variation
of delays between acks (CARD: Congestion
avoidance by RTT delays)
It has been shown that it is able to better utilize
the available b/w (30% better than Reno)
It is fair with long delay connections
Anyway, when mixed with TCP Reno it gets an
unfair share (50% less) of the bandwidth

24 Jun 2002 Roberto Innocente 47

Restart of Idle connections

The suggested behaviour after an idle period (more
than a RTO without exchanges) is to reset the
congestion window to its initial value (usually cwnd=1)
and apply slowstart
This can have a very adverse effect on applications
using e.g. MPI-G
Rate Based Pacing (RBP): Improving restart of idle
TCP connections ,Viesweswaraiah, Heidemann (1997)
suggests to reuse the previous cwnd , but to smoothly
pace out pkts, rather than burst them out, using a
Vegas like algorithms to estimate the rate

24 Jun 2002 Roberto Innocente 48

TCP buffer tuning and
parallel streaming

The optimal TCP flow control window size is the bandwidth delay product
for the link. In these years as network speeds have increased, o.s. have
adjusted the default buffer size from 8KB to 64KB. This is far too small for
hpn. An OC12 link with 50 ms rtt delay requires at least 3.75 MB of
buffers ! There is a lot of reseach on mechanisms to automatically set an
optimal flow control window and buffer size, just some examples :

Auto-tuning (Semke,Mahdavi,Mathis 1998)
Dynamic Right Sizing(DRS) :

Weigl, Feng 2001 : Dynamic Right-Sizing: A Simulation study .
Enable (Tierney et al LBNL 2001) : database of BW-delay products
Linux 2.4 autotuning/connection caching: controlled by the new kernel
variables net.ipv4.tcp_wmem/tcp_rmem, the advertised receive window starts
small and grows with each segment from the transmitter; tcp control info for a
destination are cached for 10 minutes(cwnd,rtt,rttvar,sshthresh)

University of Illinois psocket library to support parallel sockets.

24 Jun 2002 Roberto Innocente 49

TCP friendly streams

It is essential to reduce the amount of streams unresposive to network
congestion to avoid congestion collapses
It is important to develop congestion algorithms that are fair when mixed
with current TCP, because this constitutes the vast majority of traffic
TCP friendly streams are streams that exhibit a behavior similar to a
TCP stream in the same conditions :

upon congestion, if L is the loss rate, their bandwidth it’s not more than
1.3*MTU/(RTT*sqrt(L))

Unfortunately real time applications suffer too much for the TCP
congestion window halving. For this reason a wider class of congestion
control algorithms has been investigated. These algorithms are called
binomial algorithms and they update their window according to (for
TCP k=0,l=1):

Increase : W = W + a/(W^k)
Decrease: W = W – b*(W^l)

For k+l=1 these algorithms are TCP friendly (Bansal, Balakrishnan 2000)

24 Jun 2002 Roberto Innocente 50

iWarp

iWarp is an initial work on RDMA
(Remote DMA). Internet drafts :

The Architecture of Direct Data Placement
(DDP) and Remote Direct Memory Access
(RDMA) on Internet Protocols, S.Bailey,
February 2002
The Remote Direct Memory Access Protocol
(iWarp) , S.Bailey, February 2002

