

Sicurezza nei modelli peer-to-peer

F.Baiardi
Dipartimento di Informatica, Centro Serra
Università di Pisa
f.baiardi@unipi.it

Credits

- Stefano Suin (unipi serra)
- Claudio Telmon
- Laura Ricci (di unipi)
- Paolo Mori (iit cnr)
- Gli studenti del corso Sicurezza delle reti

Peer-to-peer

- condivisione
 - A livello di risorse logiche
 - A livello di risorse fisiche

nel range da file exchange al grid computing, la condivisione è comunque presente

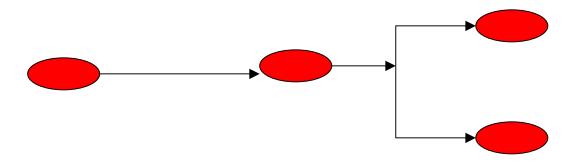
- autonomia
 - dei singoli nodi
 - sull'unirsi o lasciare una rete p2p

Sicurezza peer-to-peer

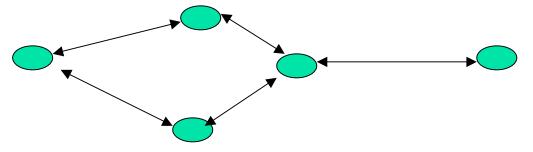
- Due prospettive
 - Chi fornisce la risorsa condivisa
 - Chi accede la risorsa condivisa
- Entrambe importanti per poter definire un modello di business
- Per ora risolte mediante autenticazione ed in base alla fiducia tra gli utenti
- é realistico se la fiducia dipende non dalla persona ma da come la persona (o chi per la persona) gestisce un sistema????

Asimmetria fondamentale p2p

- A (utilizzatore) esegue
 - un programma P
 - con dati D
 - sulle risorse fornite da B (fornitore)
- B può evitare side effects inattesi monitorando D e P
- A ha pochi mezzi per difendersi da B anche la crittografia non è adeguata poiché se si usano risorse di calcolo D e P ad un certo istante saranno in chiaro

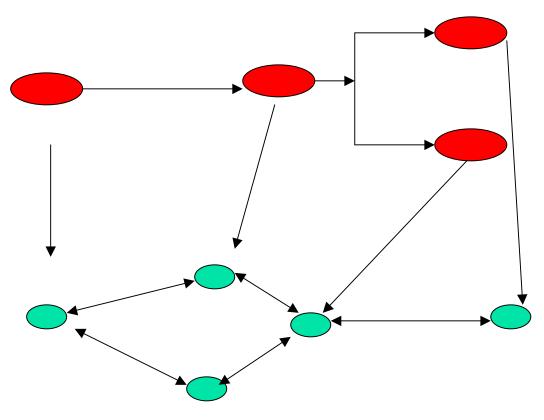

Sicurezza del fornitore

- Può essere migliorata mediante una generalizzazione il concetto di overlay che è alla base del p2p
- Passare dal concetto di overlay della topologia di interconnessione a quello di overlay completo tra reti



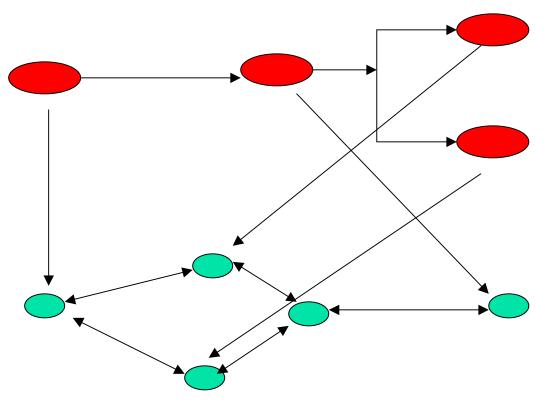
Overlay della topologia

da mappare su


Nuova topologia

- Nuovo spazio dei nomi
 - Strutturato
 - Piatto
- Nuove regole di indirizzamento
- Nuove regole di instradamento
- Nuove bande di comunicazione
- Nuove regole di filtraggio

Overlay della topologia



Overlay efficiente

Overlay della topologia

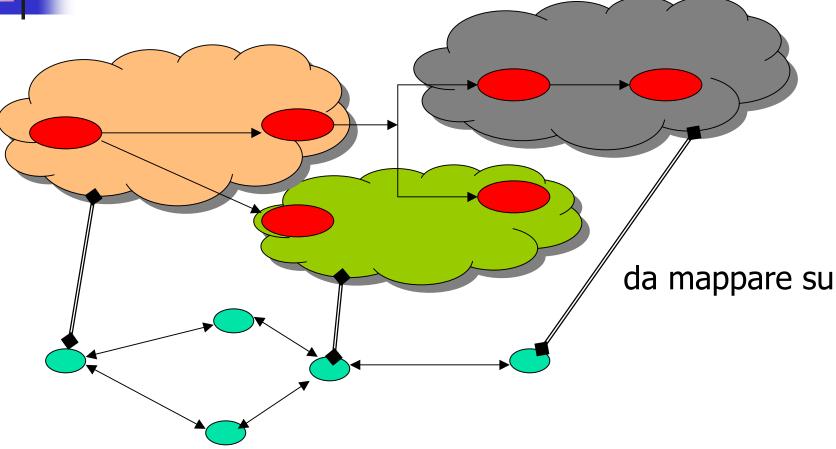
Overlay inefficiente

Overlay ed efficienza

- È comunque possibile
 - individuare i punti di inefficienza
 - riorganizzare overlay
- Vantaggi
 - è spesso più semplice misurare l'utilizzo della nuova topologia che della rete fisica
 - si possono definire attributi di sicurezza della nuova topologia (overlay= vpn)

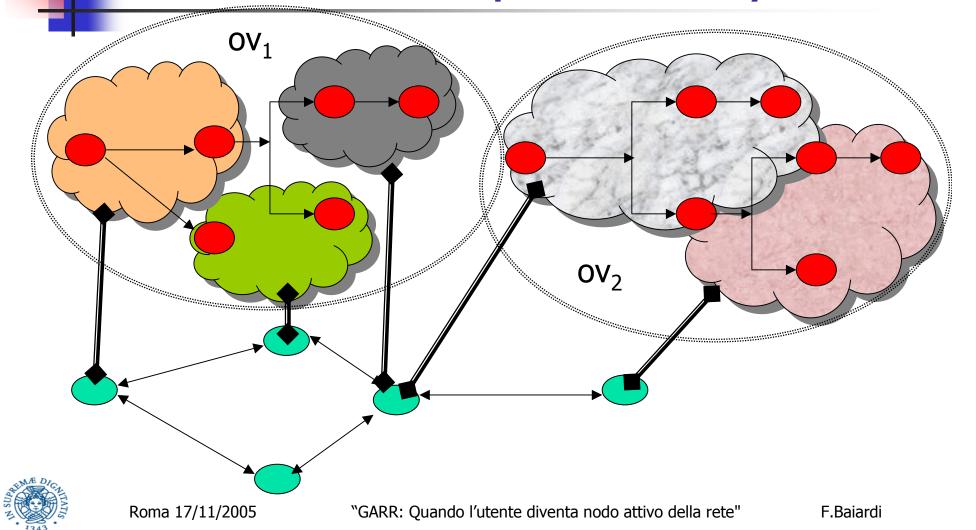
Overlay Completo

- Le tecnologie di virtualizzazione permettono definire reti virtuali complete date da
 - nodi virtuali
 - connessioni virtuali = overlay della topologia
- Un applicazione definisce ed utilizza una propria rete (overlay completo) che viene poi allocata sui componenti di un sistema reale



Allocazione di overlay

- In modo statico o dinamico sfruttando adeguatamente i meccanismi di migrazione delle macchine virtuali
- Permette di superare eventuali disomogeneità delle risorse
- Aumenta sicuramente l'efficienza nell'uso delle risorse

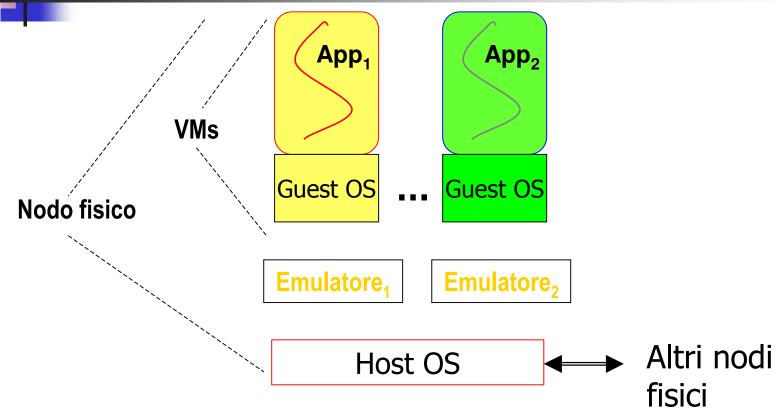


Allocazione di più overlay

Allocazione di overlay

- In generale le risorse virtuali sono mappate quelle fisiche mediante uno schema molti a uno e mai uno a molti
- Lo schema uno a molti è interessante teoricamente ma con l'avvento di chip multi core diventa poco importante perché il problema è come sfruttare la potenza del singolo nodo

Overlay completo: un punto di vista


In un primo punto di vista

- nodo di elaborazione
 - è un sistema tradizionale
 - esegue mediante host os un insieme di applicazioni ognuna delle quali è una macchina virtuale
 - Ogni vm esegue guest os+applicazioni
- overlay della topologia avviene in una delle strategie standard di p2p

Un primo punto di vista

Vantaggi

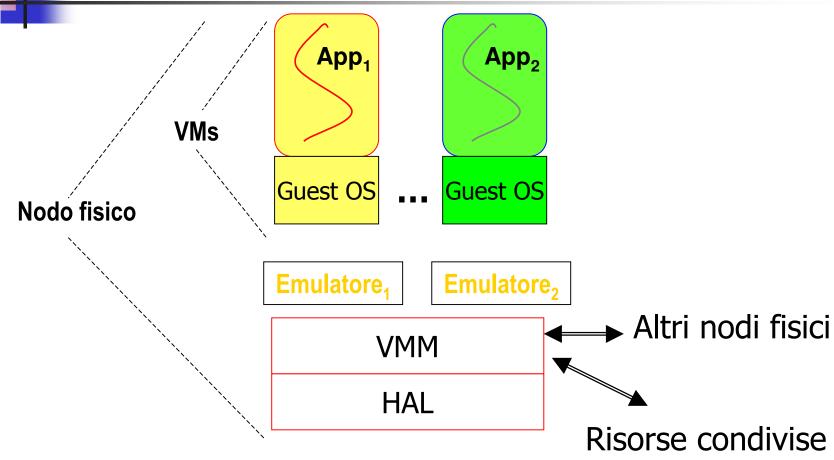
- Portabilità
- Confinamento
- Gestione più semplice dei diritti in host os
- Scelta del guest os anche in base al livello di fiducia nell'applicazione da eseguire
- Garanzia di quote di risorse condivise è ottenuta sfruttando, se esistono, i meccanismi host os

Vantaggio unico

- È possibile definire condizioni globali sullo stato complessivo del so e della applicazione per scoprire
 - Malfunzionamenti
 - Attacchi
- Proprietà spesso sfruttata per definire honeypot o honeynet

Svantaggio

- Difficile garantire una cooperazione controllata tra overlay diversi
- Il forte confinamento tra overlay diversi è fortemente diminuito se si ammette una cooperazione non controllata tra overlay


Una possibile soluzione - 1

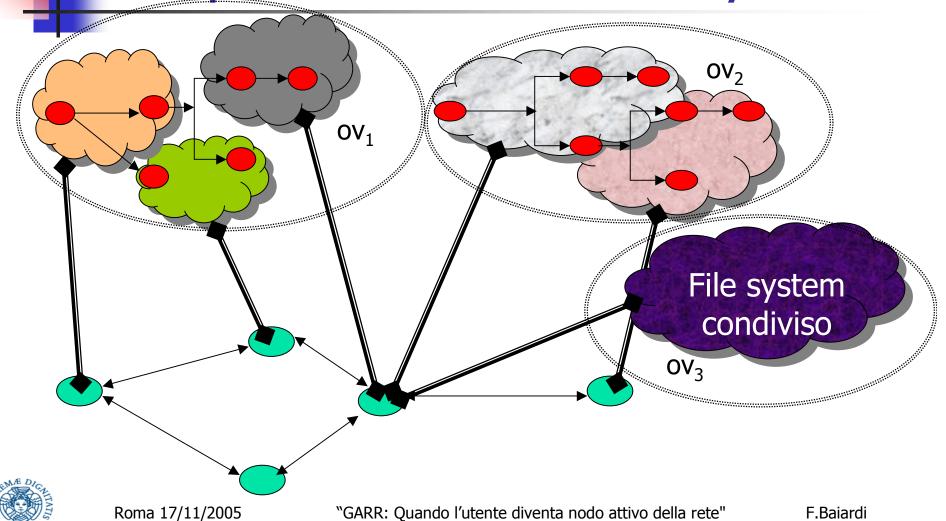
- Il nodo non esegue un full os ma un virtual machine monitor
- Astrazione di componenti per i/o
- Il fornitore definisce una politica di sicurezza per il vmm che definisca
 - Operazioni permesse ai singoli overlay
 - Interazioni permesse tra overlay
 - Gestione delle risorse condivise

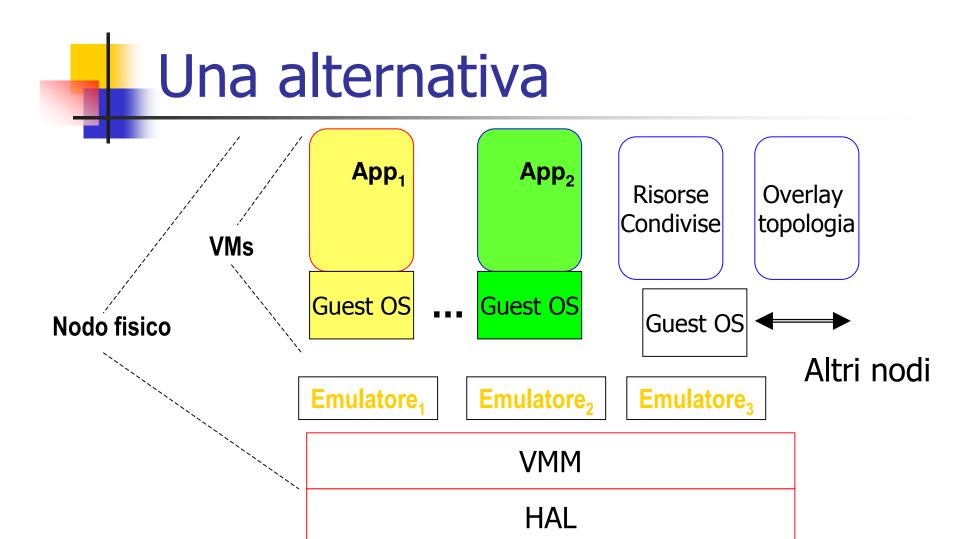
Una alternativa

Una possibile alternativa - 2

- Il passaggio da full os a vmm permette
 - L'aumento delle prestazioni
 - La certificazione più semplice delle proprietà vmm
 - L'integrazione dei controlli di guest os e vmm
- Per semplificare la politica di sicurezza i controlli possono essere associati all'overlay e non alle singole applicazioni dell'overlay
- Si conservano i vantaggi di poter misurare semplicemente diversi valori interessanti
- Resta comunque elevata la complessita VMM che incapsula risorse condivise complesse (file etc)

Una possibile alternativa - 3


- La cooperazione tra overlay può sfruttare un ulteriore overlay che implementi la gestione delle risorse condivise
- Controlli del VMM
 - Legalità delle comunicazioni
 - tra overlay
 - Con overlay per risorse condivise
 - Confinamento sulle risorse condivise non gestite dall'ulteriore overlay



Cooperazione tra overlay

Cooperazione tra overlay

Cooperazione tra overlay

- Trasmissione delle richieste al nuovo overlay può utilizzare le stesse strategie utilizzate per introdurre un proxy
- Deve comunque rimanere il controllo del VMM sulla interazioni tra overlay

Riassumendo - 1

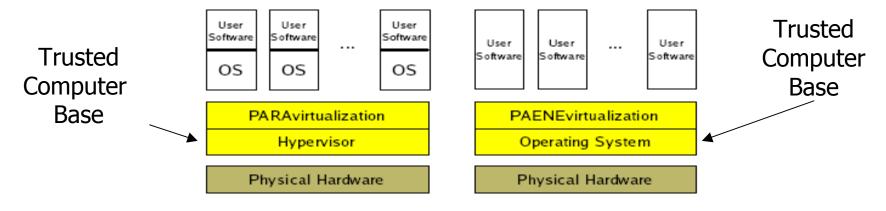
- Possiamo avere in un overlay più nodi virtuali partizionando tra loro i compiti di
 - Esecuzione applicazione
 - Gestione overlay topologia
 - Gestione risorse condivise
 - Protezione overlay da worm etc.
- Gli overlay possono essere
 - Creati allo start up ed associati a classi di utenti (grid)
 - Creati dinamicamente in base al carico
 - Riallocati (migrare)

Riassumendo - 2

- Possiamo recuperare a livello di nodi virtuali quanto perso in sicurezza nelle interazioni all'interno del nodo
- Stiamo ripercorrendo la strada dei firewall ma all'interno dei nodi
- Forse l'unico modo di sperare in un aumento di sicurezza è la legge di Moore ...

E' una visione realistica???

- Numerose tecnologie o prodotti commerciali basati su vm/vmm che hanno come obiettivo il confinamento
 - Vmware
 - Xen
 - User Mode Linux
 - Virtual server
 - Netop
 - **.** . . .


E' una visione realistica???

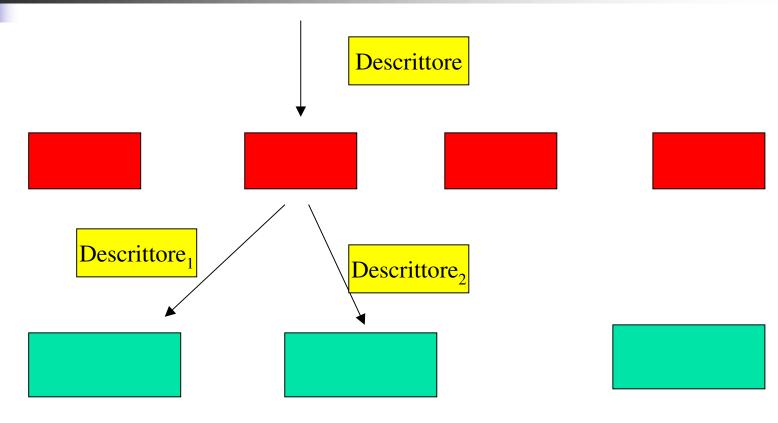
- Progetti di ricerca su condivisione controllata
 - Planet Lab Proper
 - Virtuoso
 - Ostia
 - Sharp
- Evoluzione di architetture
 - Intel VT-I, VT-X (ex Vanderpool)
 - Hyperthreading + multicore (adatte per vm)
- Implementazioni alternative di VM
 - Interpretazione pura (con o senza caching)
 - Paravirtualization (Xen)
 - Paenevirtualization

- Interpretazione + modifiche dinamiche per problemi x86= VMWare
- Paravirtualization = si espone esistenza di VMM e VM al sistema operativo che può essere modificato (Xen)
- Paenevirtualization = no untrusted os

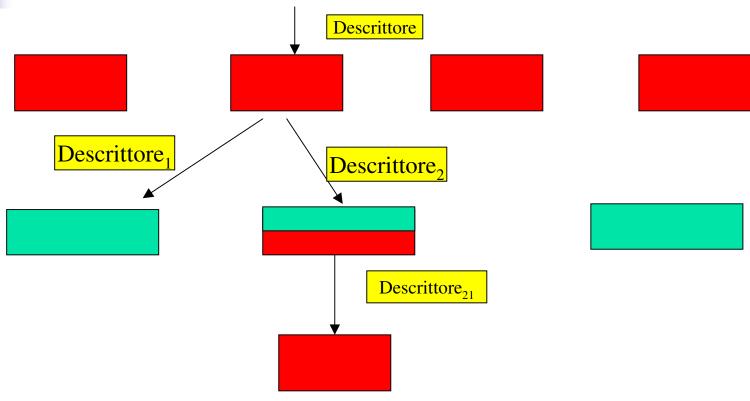
Hyperthreading + multicore

Una soluzione interessante dedica alcuni thread, e quindi alcuni core, a

- personal firewall
- personal honeypot
- personal overlay topology
- ...


Punti deboli

- Gestione dei dispositivi
 - Auspicabile una visione "a processi" dei dispositivi dove interazione avviene mediante scambio di descrittori
 - Più adatta ad un sistema a "nucleo minimo" (per qualcuno esokernel) in cui il nucleo implementi multiprogrammazione e livello HAL
 - VMM=microkernel done right?????????



Gestione dispositivi

Gestione dispositivi virt²

Asimmetria -1

- Quale protezione per chi mappa il proprio overlay = utilizzatore
 - Possibilità di verificare la consistenza dei risultati ottenuti
 - Estremamente difficile garantire la confidenzialità di
 - Input
 - Output
 - Parametri interni

Asimmetria - 2

- Alcuni risultati preliminare su
 - adozione di codifiche one-time pad per proteggere
 - Input
 - Output
 - Uso di frammentazione, encryption ed anonimity per dati memorizzati su supporti di più fornitori
- Più difficile proteggere i parametri dei modelli matematici implementati
- Modello di business commerciale???

