

Architetture per lo streaming multimediale su reti ad accesso wireless

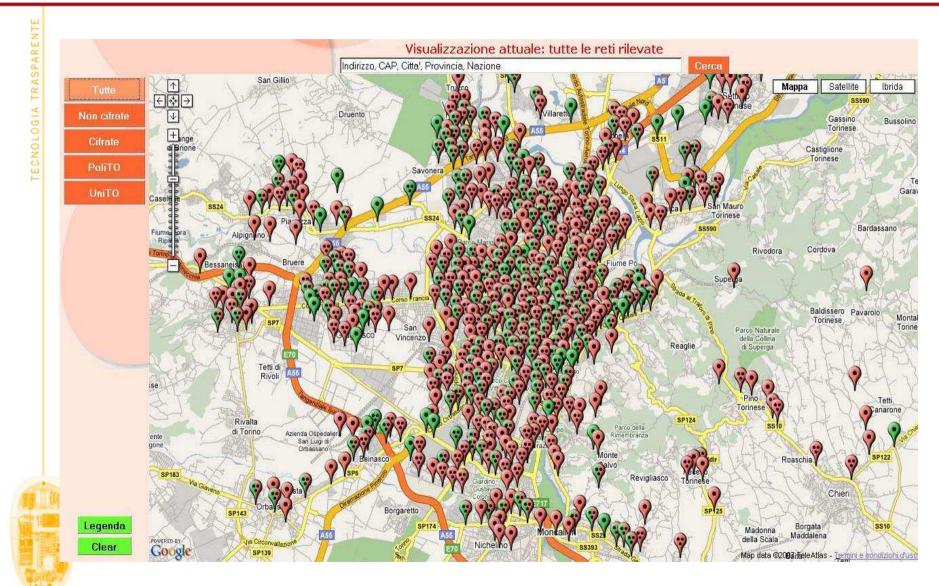
Roma, 18 giugno 2009 Roberto Borri, Andrea Ghittino, Ferdinando Ricchiuti CSP innovazione nelle ICT – Direzione R&S

Per cosa si usa una rete wireless?

- WLAN (estensione di LAN)..... le origini(!)
- Hot-spot WiFi
 - In ambito "privato" (ad esempio sala conferenza 8-)
 - Come servizio pubblico
 - Per la valorizzazione di asset sul territorio (esempio Municipalizzate)

Principalmente per accesso Internet "anywhere"

- Trunked 5.7 GHz (+WiF 2.4 GHz) in aree digital divide
 - Trasporto backbone a larga banda (IEEE802.11h)
 - Connettività ai privati in topologia punto-multipunto
 - Servizi di connettività pubblica tramite Hot-spot "comunali"
 - Servizi per il territorio (ad esempio monitoraggio)


Principalmente per accesso Internet "banda larga" e servizi locali di comunità

Gli "hot-spot" urbani: tanta RF ma servizi, quali?

Quale tecnologia di rete per il "digital divide"?

ADSL

- Scarsa penetrazione nei territori di montagna
- Qualità dei doppini scadente (con ripèercussioni sulla capacità di banda reale: tipicamente inferiore ai 640kb/s in downlink ed ai 128kb/s in uplink)

Satellitare

- Soluzione "consumer"
- Richiede intervento specialistico per il puntamento (distributore autorizzato)
- Sofferente Meteo
- Sensibile alle applicazioni

• Wireless 802.11 (Wireless Internet Service Provider – WISP)

- Infrastrutture di rete basate su bande ISM (dorsali a 5 GHz e accesso a 2.4 GHz negli hot-spot e 5 GHz all'utenza domestica)
- Nessuna protezione da interferenti
- Throughput fino a 30Mb/s ma condivisi in uplink e dowlink e tra tutti gli utenti

Il caso digital divide "Valli Orco Soana" (VOS)

TECNOLOGIA TRASPARENT

Dorsale in fibra ottica
Collegamento wireless tra fibra ottica e traliccio
Rete di contribuzione

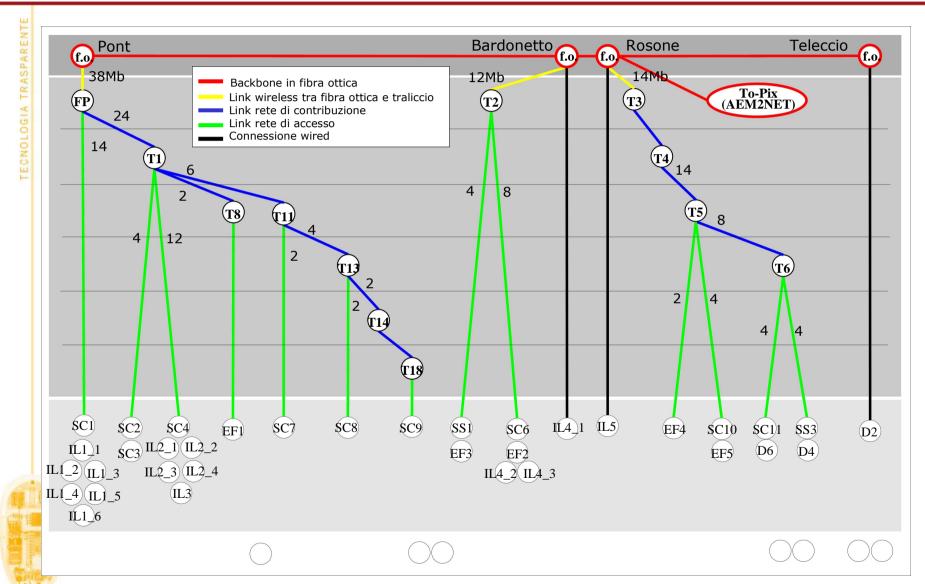
http://wipie.csp.it/vos/

- 11 Comuni
- 616.06 km2
- 8,300 abitanti (densità della popolazione: 13.5 ab/km2)
- Circa 15.000 turisti all'anno

Nel Parco Nazionale del Gran Paradiso

L'infrastruttura di rete

Backbone in fibra ottica Connessione wireless tra f.o e tralicci Rete di contribuzione Aree di accesso wireless TOP-IX (AEMNET)



Backbone in fibra ottica: connette la rete nelle Valli con Internet **Rete di contribuzione wireless:** dorsale all'interno delle due Valli **Aree di accesso wireless**: copertura a 5GHz realizzate con apparati conformi allo standard IEEE 802.11h a partire dai tralicci presenti nell'area

"Valli Orco Soana": ma quanta banda ci serve?

Lo streaming multimediale in Internet

- Servizi audio e video in streaming già disponibili in Internet
 - Secondo schemi di utilizzo applicativo "generici" (LAN, ADSL, WiFi hot-spot....)
 - Senza differenziazione di modello di servizio per flussi "live" e "on demand"
- Scalabilità basata su
 - Piattaforma server (ad esempio YouTube)
 - Senza QoS particolare ma basati sul concetto di "Banda infinita" e comunque sempre "best effort"

Schemi adottati anche dagli utenti per la tipologia

- User generated content
 - Attraverso l'upload dagli utenti sui portali web
 - Direttamente dai dispositivi (ad esempio le webcam)

Conferma delle criticità

I problemi

- Improvviso degrado della qualità degli stream multimediali al crescere degli utenti in un hot-spot (numero di utenti variabile legato alle caratteristiche dei video e dell'hot-spot)
- Criticità di banda anche sul livello locale....Interesse da parte di alcuni utenti di attivare webcam IP accessibili da Internet
 - Stream VS foto periodiche

e cause

- Backbone basato principalmente con rilanci wireless
 - Più hot-spot utilizzano gli stessi collegamenti
 - Condivisione dell'infrastruttura di accesso tra hot-spot ed utenti fissi
 - Degrado nelle prestazioni di rete in presenza di multicast su collegamenti wireless

Risultati conseguenti

ECNOLOGIA TRASPARENTE

Nessuna garanzia reale di servizio Nessuna efficienza

Difficoltà all'ingresso per i nuovi "content provider" Rischi e non opportunità per i WISP

Gentralizzazione (monopolizzazione) dei servizi multimediali (e non solo!)

Come intervenire per ottimizzare?

Gestendo "la prossimità" per il traffico che non necessita di transito verso altre destinazioni esterne alla rete "locale"

Definendo una architettura "topology based"

Limitando la quantità di *bps* necessaria per la fruizione dello streaming (questione di CODEC)

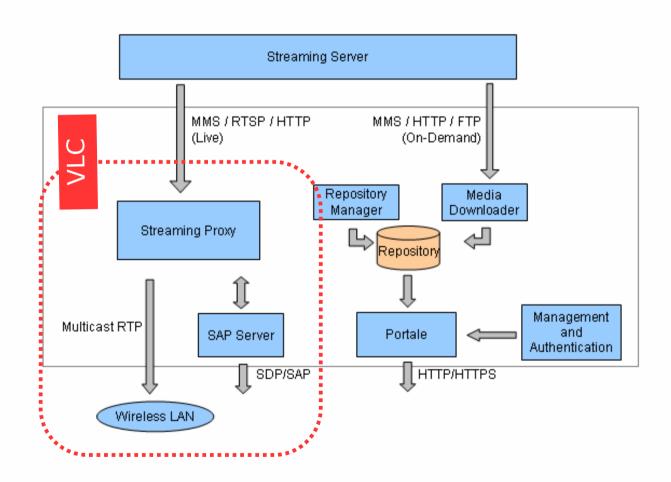
Gli obiettivi del progetto (I)

Hot-spot broadcasting

Sistema basato una piattaforma embedded per la gestione ottimizzata dello streaming all'interno di un hot-spot

- Principali caratteristiche
 - Ricezione di flussi in unicast e ritrasmissione in multicast
 - Annuncio del servizio tramite SAP
 - Servizio di Video on Demand per contenuti disponibili localmente
 - Contenuti da rendere disponibili localmente acquisiti in modo automatico tramite feed RSS
 - Soluzione basata su piattaforma hardware embedded

Hot-spot broadcasting – Le specifiche del sistema


- Creazione di una cache distribuita sul territorio
 - Repository locale di contentuti multimediali on demand
 - Aggiornamento automatico per rimozione e download di nuovi contenuti
 - Nessuna conversione di formato, ma semplice pubblicazione su server web locale
- Streaming live
 - Connessione unicast verso server di streaming remoto
 - Ritrasmissione locale in multicast del flusso ricevuto
 - Annuncio delle trasmissioni disponibili
- Architettura di riferimento
 - Piattaforma di streaming di riferimento: Windows Media 9
 - Sorgente unicast da convertire in multicast
 - Feed RSS per l'aggiornamento dei contenuti on demand
- Sistema embedded altamente flessibile
 - Ricezione dei contenuti via Ethernet/uplink wireless
 - Ritrasmissione
 - Su Ethernet
 - In hot-spot creato dal sistema embedded stesso
 - Possibilità di integrare il sistema all'interno di hot-spot esistenti

L'architettura del sistema

La piattaforma HW utilizzata

Motherboad Alix

CPU: 500 MHz AMD Geode LX800

Memoria: 256 MB DDR DRAM

Storage: slot per CompactFlash

Alimentazione: connettore DC o POE, da 7V a 20V

Due slot miniPCI

Un'interfaccia Ethernet

Una porta seriale

Dimensiono: 100 x 160 mm

Interfaccia wireless (opzionale)

Compex 802.11a/b/g/h

Multicast su reti wireless

Pochi (!?) operatori gestisono correttamente i flussi multicast

 Necessità di adottare una soluzione indipendente dalle reti attraversate

Multicast e wireless

- **Bitrate fisso** per la trasmissione multicast
- Tipicamente 6Mb/s, per garantire la distanza massima
 - Forte impatto sulle prestazioni complessive della rete wireless
 - Possibilità di impostare un bitrate per il multicast maggiore a scapito del raggio di copertura
 - Opzioni proprietaria, presente solo con alcuni driver e non offerta da tutti i produttori
 - Non sono disponibili algoritmi per adattare il bitrate in modo dinamico
 - Forti criticità nel gestire il tasporto di flussi multicast su collegamenti wireless punto-punto

Gestione conversione unicast-multicast

- Windows Media Player presenta problemi di compatibilità nella ricezione dei flussi multicast generati da VLC
- VLC, streaming server adatto per il sistema embedded linux, alla versione 0.8.6 è in grado di trasmettere in multicast solo flussi con incapsulamento Transport Stream MPEG
- MPEG non ha supporto nativo (ed è logico!) per WMA e WMV tuttavia VideoLAN è in grado di veicolare con un "trucco" WMV. L'inoltro dei contenuti audio è effettuato tramite una conversione di formato in MP3 direttamente a bordo del sistema embedded

Soluzione "sporca" ma trasparente, dovuta alle specifiche sul Media Server, al sistema embedded Linux e all'assenza di un Centro di "transcoding".

Prestazioni del sistema embedded

Utilizzo della CPU del sistema embedded a seconda dell'attività

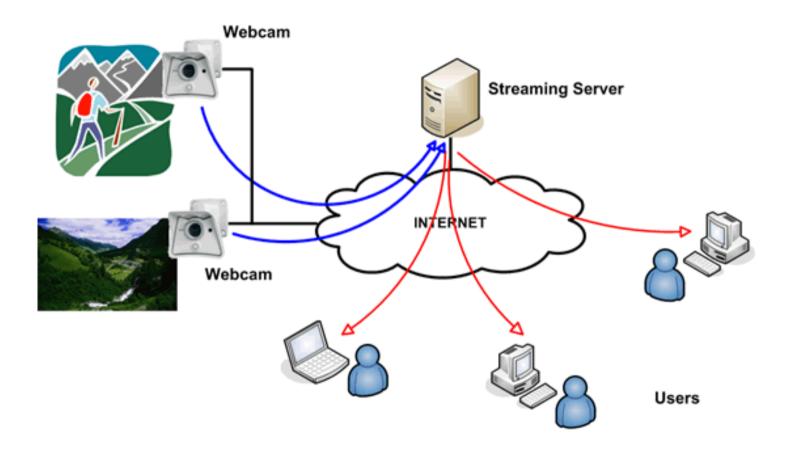
- Accesso a contenuti locali tramite video on demand
 - CPU inferiore al 5%
- Per le caratteristiche dell'inoltro di un flusso da unicast a multicast partendo dalla piattaforma Windows Media 9
 - Utilizzo della CPU compreso tra 80 e 100%
- Inoltro di un flusso da unicast a multicast codificati in modo ottimale
 - Utilizzo della CPU inferiore al 5%

Gli obiettivi del progetto (II)

Webcam distribution system Architettura per ottimizzare la pubblicazione di flussi multimediali generati in tempo reale dagli utenti

- Principali caratteristiche
 - Architettura basata su centro servizi per la redistribuzione in Internet del flusso multimediale
 - Singola connessione unicast tra il centro servizi e la webcam remota
 - Possibilità di ricodificare lo stream multimediali e plubbicarlo in più modalità

Webcam distribution system – Le specifiche del sistema


- "Nessun" vincolo sulla webcam scelta
 - Utilizzo di webcam generiche, anche con interfaccia Ethernet da outdoor
 - Acquisizione del "flusso video" prodotto dalla webcam tramite apposito modulo per la
 - Gestione dell'invio periodico di immagini tramite http push
 - Selezione del formato che garantisce la migliore qualità dell'immagine
- Centro servizi: Acquisizione del flusso video per la ritrasmissione
 - Interconnesso ad Internet realmente a banda larga
 - Conversione e pubblicazione dello stream multimediali in più formati
 - Pubblicazione web dell'elenco contenuti
 - Registrazione/archiviazione/post processing (esempio videosorveglianza) del filmato

L'architettura del sistema

Le principali componenti software del centro servizi

- VLC VideoLan Client
 - Sistema modulare con più plug-in per la gestione di sorgenti con diverse codifiche
 - Compatibile con http push
 - Possibilità di ricodificare il flusso multimediale
 - Creazione di più stream in output
 - Registrazione su hard disk locale
- Connection monitoring engine
 - Verifica periodica dello stato di
 - Webcam
 - Regolarità del Flusso multimediale
 - Inoltro richiesta di nuova attivazione del flusso a VLC
 - Riavvio automatico della webcam in caso di problemi

Validazione in campo (I)

- Installazione presso il Rifugio Pontese
 - Parco Nazionale del Gran Paradiso, 2.200m di altezza
 - Webcam IP Mobotix, dotata di interfaccia Ethernet
 - Collegamento tramite ponte radio a 5GHz
 - Alimentazione tramite pannelli solari

Validazione in campo (II)

- Acquisizione immagini in modalità http push
 - Flusso variabile tra 1-1,5Mb/s verso il centro servizi
- Servizio (nuovamente) prossimamente disponibile su
 - http://wipie.csp.it/vos/mappa/
 - http://wipie.csp.it/vos/mappa/mappa.php?ID_postazione=26#

I requisiti applicativi e l'evoluzione delle CPU

Requisiti di base:

- √Consumi bassi (<5W)
 </p>
- √ Compatibilità X86 per semplificare lo sviluppo SW
- ✓ Slot miniPCI per le radio
- √ Form factor

Ubiquiti RouterStation (processore **MIPS** 680 MHz, 64MB RAM, slot miniPCI) costo circa 50 € PRO: low cost CONS: CPU

PCengines Alix 3D3 (processore **AMD Geode** LX800 500 MHz, 256 MB RAM, slot miniPCI) costo circa 80 € PRO: low cost, compatibilità X86 CONS: form factor proprietario

Board uATX (processore **ATOM**, RAM su DIMM, slot miniPCI Express) costo circa 90 € PRO: Alte prestazioni, X86 CONS: slot miniPCI Express (necessario adattatore per miniPCI)

Nvidia ION (processore **ATOM**, RAM su DIMM, slot miniPCI Express) costo > 100 € PRO: Alte prestazioni per consumi bassissimi CONS: form factor proprietario, orientato al multimediale

Architetture per lo streaming su reti wireless

Il futuro delle CPU x86 oltre il 2009 (I)

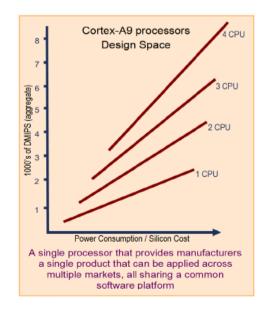
Intel:

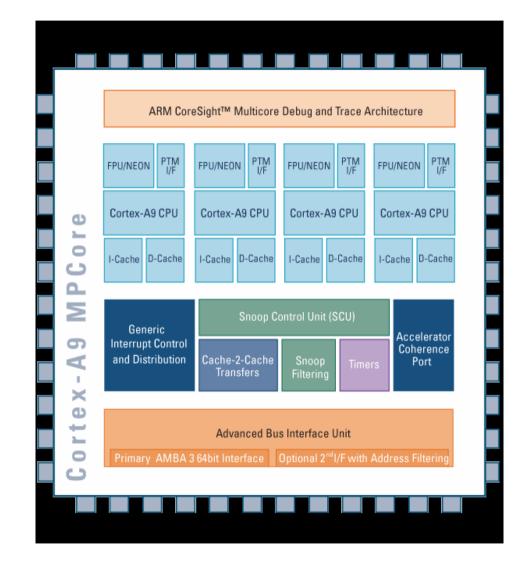
- Memory controller integrato
- Video controller integrato
- necessari 2 chip in totale
- Soluzioni 1 o 2 core
- Very Low Power in un sigle chip (circa 10W)

AMD:

- Memory controller integrato
- Non integra il video controller
- Necessari 3 chip in totale
- Soluzioni 1 o 2 core
- Consumi intorno ai 20W
- Low cost

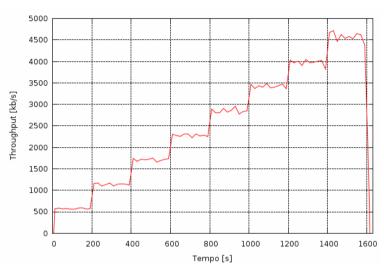
AMD Ultraportable Notebook Platforms

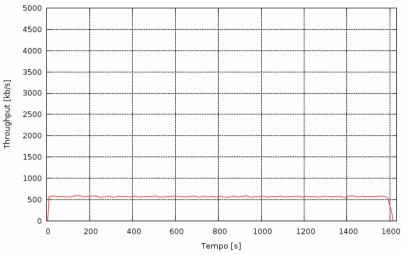



Il futuro delle CPU x86 oltre il 2009 (II)

ARM Cortex A9 MPCore

- Architettura multicore (fino 4)
- Media processors (Neon)
- Oltre 1 GHz clock
- Low power (< 2W)





Alcune osservazioni conclusive su Unicast VS Multicast

- Misura effettuata su rete Ethernet
 - Un nuovo utente connesso ogni 200 secondi
 - Singolo flusso da 580kb/s circa
- Benefici:
 - Risparmio di banda (tipico Multicast)
 - Riduzione degrado delle performance su rete wireless, dovuto a
 - Collisioni uplink e downlink (ACK di livello 2 e TCP)
- Ottimizzazioni:
 - Gestione dell'handover tra AP
 - Gestione del "leave group message" multicast

Alcune osservazioni conclusive sui componenti del sistema

- Multicast & client
 - Ottimo supporto offerta da VLC
 - Gestione annunci SAP
 - Ricezione stream multicast basati su RTP
 - Test approfonditi con Windows Media Player
 - Problemi in ricezione streaming multicast generato da VLC
 - Necessità di pubblicare annunci SAP su pagina web
- Webcam e bitrate generato
 - Incremento delle dimensioni del flusso durante la notte, anche in presenza di buio quasi assoluto
 - Problemi legati al sensore CCD ed alla codifica "del rumore"

Contatti

Roberto Borri

Direttore Ricerca e Sviluppo Tecnologie

mail: roberto.borri@csp.it tel. +39 011 4815184

CSP innovazione nelle ICT

Sede

via Livorno 60 - 10144 Torino Edificio Laboratori A1 Tel +39 011 4815111 Fax +39 011 4815001 E-mail: info@csp.it

Seconda sede operativa

Villa Gualino - Viale Settimio Severo 63 10133 Torino

www.csp.it rd.csp.it

Architetture per lo streaming su reti wireless

